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Abstract 

The Laue technique is suitable to study effects that 
depend on wavelength such as absorption, anomalous 
dispersion or secondary extinction. The accuracy of 
the measured integrated intensities for X-ray structure 
determination is comparable with measurements of con- 
ventionally collected data. The present paper describes 
and discusses the results of a single-crystal data col- 
lection with a Laue diffractometer. The results obtained 
from the Laue data are in very good agreement with the 
results from conventionally collected data. 

Introduction 

The availability of synchrotrons as white-radiation X-ray 
sources of high spectral brilliance is the reason for recent 
developments in Lane diffraction techniques for data col- 
lection, especially in the field of protein crystallography. 
Several two-dimensional detector systems are in use, 
such as films (e.g. Rabinovich & Lourie, 1987), image 
plates (e.g. Miyahara, Takahashi, Amemiya, Kamiya & 
Satow, 1986), multiwire proportional chambers (e.g. 
Baru et al., 1978), the FAST system (Bartunik & 
Borchert, 1989) and others (International Tables for 
Crystallography, 1992). 

Since it is the primary intention in this field to 
increase the speed of data collection, less attention is 
paid to the accuracy of a single measurement. Only one 
attempt (Sakamaki, Hosoya & Fukamachi, 1980) has 
been made to incorporate the Laue technique into an 
ordinary four-circle-diffractometer device. The present 
authors reported in a series of short communications on 
the hardware development of devices suitable for this 
purpose (Lange & Burzlaff, 1991a,b). 

It is the intention of this paper to report first results 
on the basis of a medium-sized inorganic structure, to 
compare the data with a data set collected in the classical 
way and to discuss the results and the technique in 
comparison with the work of Sakamaki et al. 

Measurement of integrated intensities 

Single-crystal X-ray diffraction with white radiation dif- 
fers from the monochromatic technique in the following 
ways: 

1. Instead of one well defined Ewald sphere with 
radius R = l/A, a continuous distribution of Ewald 
spheres with Rmin ~ R < Rmax is present resulting in 
a simultaneous diffraction process for a large number 
of reciprocal-lattice vectors hi. Each vector hi selects 
its own Ewald sphere depending on its position in the 
reciprocal space. 

For the simultaneous registration of the reflections, 
a two-dimensional detector is necessary that allows the 
angular localization of the diffracted beams. In addition, 
the wavelength distribution within the diffracted beam 
has to be known. Approximately 17% (Cruickshank, 
Helliwell & Moffat, 1987) of all diffracted beams contain 
a series of nA related to the scattering vectors nh of the 
reflection (n = 1, 2, 3 . . . .  ). 

2. In contrast to the conventional monochromatic 
technique, a property of the crystal is utilized in another 
way. With the model for a real crystal composed of small 
mosaic blocks, the end point of the scattering vector h 
must be replaced by a small fragment of a spherical 
surface. Its shape is determined by the mosaic-block 
distribution of the crystal. 

With monochromatic radiation, scan procedures must 
be applied to obtain the integrated intensity originating 
from all mosaic blocks. In the case of white-beam 
diffraction, all mosaic blocks are in scattering position 
simultaneously since a bundle of Ewald spheres (close to 
the 'main' Ewald sphere for the reflection corresponding 
to h) is present. No scan process is necessary for the 
measurement of the integrated intensity provided that the 
detector is suitable to collect the entire diffracted beam. 

It is the basic idea of this paper to make use of 
the second point above concerning a single reflection 
h. In order to determine the wavelengths related to a 
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932 SINGLE-CRYSTAL DATA COLLECTION 

Laue reflection, the detector must be supplied with a 
multichannel analyser. 

This technique is more flexible than the use of a 
conventional diffractometer since the experiment is not 
restricted to the wavelength of one characteristic line but 
a suitable wavelength A can be selected within the range 
of the white radiation. These considerations lead to the 
construction of a Laue diffractometer as described by the 
authors (Lunge & Burzlaff, 1992). 

According to the previous considerations, two differ- 
ent measuring techniques are possible with the Laue 
diffractometer. 

1. Polychromatic technique (PMT). The PMT is simi- 
lar to the classical Laue technique and uses the entire 
white X-ray spectrum. The orientation of the single 
crystal is fixed and the film plate is replaced by the 
scintillation counter with multichannel analyser. The 
detector can be moved to a single reflection position 
in order to measure the integrated intensity and the 
wavelengths within the Laue reflection. 

The PMT is used before an orientation matrix is avail- 
able. In order to calculate an orientation matrix, a field of 
directions (O,v) E ([69min, 69max], [b'min, /Jmax]) is scanned 
by the detector. 69 and v are the detector axes. The 
reciprocal coordinates hi = (hx, hy, hz)i of the detected 
reflections in ([69min, 69max], [//min,//max]) are calculated. 
From this, the orientation matrix is determined in the 
usual way. 

2. Quasimonochromatic technique (QMT). After the 
determination of the orientation matrix by the PMT, the 
QMT can be applied to the refinement of the orientation 
matrix and to the data-collection process. In this case, the 
scattering vector h is moved to one diffraction position at 
a selected wavelength Aq. All reflections can be treated 
in the same way concerning absorption and other effects 
depending on wavelength. 

Laue diffractometer 

A detailed description of the diffractometer is given 
by Lange & Burzlaff (1992). Here, some characteristic 
properties are summarized: 

1. Four-circle diffractometer (Burzlaff, L a n g e &  
Rothammel, 1987). Two crystal axes (w, 6) with 
inclination angle of 30 ° , two perpendicular detector 
axes (69, v), 69 and w are coaxial. Crystal-tube distance: 
400 mm. 

2. Tube. Tungsten anode, 50kV, 40 mA. Unfiltered 
spectrum without characteristic lines within the interval 
[0.248, 1.02/~]. Wavelength of QMT: Aq = 0.46A 
26.95 keV. 

3. Detector device. Photomultiplier with NaI(T1) scin- 
tillation crystal. Energy resolution: 46% at 5.9 keV. Mul- 

tichannel analyser (MCA) with 1024 channels (Lunge & 
Burzlaff, 1991a). 

In order to achieve high accuracy, important proper- 
ties and parameters of the detector system and the X-ray 
source were investigated and used for data correction: 

1. Calibration. To a first approximation, the channel 
number of the MCA is proportional to the energy. This 
relation is not sufficient for high-accuracy measurements 
since deviations from the linearity are observed (up to 
15%). The reason for these deviations is the absorption 
behaviour of the NaI scintillation crystal depending on 
the wavelength (e.g. Aitken, Beron, Yenicay & Zullinger, 
1967). 

2. Temperature stability of the detector system. The 
calibration depends also on the temperature of the de- 
tector. An investigation led to a value of 0.2%/1 K for 
the change of the detector-signal amplitudes. 

3. Energy resolution. To a first approximation, the 
energy resolution of the detector is AE/E cx 1/E 1/2. 
A detailed investigation led to the result that there are 
deviations up to 10% from this relation. 

4. X-ray spectrum. The maximum counting rate 
within the white spectrum is at  A m = 0.49A -~ 
25.30 keV. Am depends on the tube voltage, thickness of 
the scintillation crystal etc. and is close to Aq. 

With the QMT at Aq and a tube voltage of 50 kV, 
the second order of h cannot appear in the energy 
spectrum of the Laue reflection and the main peak at Aq 
is not modified by escape peaks (see e.g. Kaelble, 1967; 
International Tables for X-ray Crystallography, 1962). 

5. Polarization of the white X-ray spectrum. In order 
to determine the degree of polarization, some reflec- 
tions were investigated applying the QMT at Aq. Some 
scattering vectors h were moved around the 6 axis step 
by step. Each 6 position 6i leads to a pair of detector 
angles (vi, 69i). If the beam were partially polarized, a 
systematic change of the reflection intensity should be 
observed. Since no polarization could be observed, the 
polarization factor for unpolarized radiation was used 
for the collected data. 

High-accuracy Laue data may be expected when the 
properties of the detector and the X-ray spectrum are 
taken into account and when a wavelength of Aq = 
0.46A is selected. According to Kramers's (1923) 
theory, the efficiency of the production of X-rays is 

X-ray energy 
r / =  = 9.2 x 10-1°ZU, (1) 

cathode ray energy 

with U in V. The efficiency of the tungsten tube (Z = 
74) at U = 50 kV is 0.34%. With Pt or Au tubes (Z = 
78, 79), the efficiency cannot be increased remarkably; 
other tubes such as Ag, Mo or Cu (Z = 42, 47, 29) lead 
to much lower efficiencies. 
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Data collection 

The test crystal for the data collection was a Zn-D'Ansite 
single crystal [spherical with diameter 0.38 (3)mm]. 
This compound is a salt with the composition ( Z n S O 4 ) -  

3(NaC1)9(Na2SO4) and Z = 4. Burzlaff & Grube (1980) 
reported investigations of twinned Zn-D'Ansite single 
crystals. According to their paper, the space group 
is 143d. The lattice parameter is a = 15.9132(5)A,, 
#(0.46/~) = 4.5 c m -  l and F(000) = 3092. This crystal 
was chosen because an accurate data set (Burzlaff & 
Grube, 1980) was available, measured with Mo Ks  
radiation and a single-crystal diffractometer (Hilger & 
Watts Y290). The determination of the metric by the 
different Laue techniques was performed in two steps: 

1. Determination of the metric by the PMT. From 
15 Laue reflections related to 24 scattering vectors, a 
preliminary orientation matrix was calculated with lattice 
parameters a = 15.7 (2)/~, c~ = 90 (1)°. 

The orientation matrix was calculated in the usual way 
(e.g. Gomm, 1993) from the coordinates (hx, hy, hz)i of 
the scattering vectors hi (i = 1, 2 , . . . ,  24). The coordi- 
nates of each scattering vector hi depend on the angles 
wi, ~i, 69i, vi and the energy E,. 

2. QMT refinement. The orientation matrix determined 
by the polychromatic procedure is accurate enough to 
start a refinement at 0.46 A. The refinement with the 
123 reflection and its symmetrical equivalents leads to a 
= 15.913 (9) A, c~ = 90.01 (2) °. 

All reflections were measured within 0 < 269 < 43 ° 
for - 2 6  _< (h, k) _< 26, - 2 6  _< l _< 1 at 300 K; standard 
reflections were 510 and 910, measured after each 250 
reflections; measurement time for each reflection was 
55 s. The detector aperture was 3 mm in diameter. 13 505 
Laue reflections were measured including systematically 
absent reflections due to the dtli0] glide plane; 807 
unique reflections were obtained after merging; 92 re- 
flections with IF] _< 3o" were removed from the data 
set, 33 systematically absent reflections due to the d[l|0 l 
glide plane were also removed.* 

* A list of structure factors has been deposited with the IUCr 
(Reference: SH0055). Copies may be obtained through The Managing 
Editor, International Union of Crystallography, 5 Abbey Square, Chester 
CHI 2HU, England. 

counts s- I t I 150 .2 844 

50 

0.77 0.57 0.46 0.39 

Fig. 1. Laue reflection with several orders: 633 at 0.77 A, 844 at 0.57 A, 
10,5,5 at 0.46 A, and 12,6,6 at 0.39 A. Crystal: Zn-D'Ansite, space 
group 1713d, a = 15.913 A. 

Table 1. Fractional coordinates 

Values given in the second line for each atom result from 
monochromatic data. 

x y z 

Na/Zn 0.3293 (1) 0.3293 (1) 0.3293 (1) 
0.32956 (7) 0.32956 (7) 0.32956 (7) 

C1 0.25000 0.37500 0.00(O 
0.25000 0.37500 0.00000 

S(1 ) 0.25000 0.2683 (1) 0.50000 
0.25000 0.26827 (6) 0.50000 

S(2) 0.46086 (9) 0.46086 (9) 0.46086 (9) 
0.46069 (5) 0.46069 (5) 0.46069 (5) 

Na(1) 0.3748 (1) 0.3488 (1) 0.1180 (1) 
0.37487 (9) 0.34864 (8) 0.11778 (9) 

Na(2) 0.5177 (7) 0.246 (1) 0.4570 (2) 
0.5178 (2) 0.2454 (5) 0.4567 (2) 

O(1) 0.0863 (2) 0.4761 (2) 0.4637 (2) 
0.0878 (2) 0.4747 (2) 0.4638 (2) 

0(2) 0.2320 (2) 0.0344 (2) 0.4263 (2) 
0.2319 (2) 0.0338 (1) 0.4260 (2) 

0(3) 0.0180 (2) 0.3231 (2) 0.0725 (2) 
0.0180 (2) 0.3229 (2) 0.0724 (2) 

0(4) 0.4091 (3) 0.4091 (3) 0.4091 (3) 
0.4086 (3) 0.4086 (3) 0.4086 (3) 

A full-matrix least-squares program fits a sum of 
Gaussian functions to the energy peaks of the measured 
Laue-reflection spectrum 

J J 
S(E) = E ai(E)= E Aiexp[(E-Ei)2/n2i]. (2) 

i = 1  i = 1  

Ai is the amplitude, Ei the center of the peaks, B; 
determines the width of the peaks and j is the number of 
peaks in the spectrum. An example with several orders 
within a Laue reflection is shown in Fig. 1. This example 
illustrates the counting rate per channel and the result of 
the fitting process. 

The standard deviation cr of a reflection was deter- 
mined by o.(IFI 2) = (o.7 +o.J + o.~ + o.?,),/2. The 
standard deviation resulting from the statistical error is 
o./ = N 1/2 with 

+oo 
m = f Gi(E) dE = ~rl/2AiB i. (3) 

- - 0 0  

O.A and O.B are the estimated standard deviations of Ai 
and Bi calculated from the general equation of the least- 
squares procedure (e.g. International Tables for X-ray 
Crystallography, 1959). The standard deviation of the 
background Nu is o.u -- NU 2. 

The least-squares procedure does not always converge 
if j >3. In this case, the calculated energies Ei and 
peak widths Bi are not refined. The least-squares start 
values for the parameters Ai are calculated from the 
measured spectra by a recursive algorithm that considers 
the neighbouring peaks i + 1 and i - 1. In this way, 
a stable convergence of the least-squares procedure is 
guaranteed. This special procedure allows the separation 
of up to six overlapping orders nh unambiguously within 
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the energy spectrum, in spite of the poor resolution of 
the detector. 

The background-correction program used a back- 
ground function B(O, A) (0 = diffraction angle), which 
was evaluated separately in a first attempt. The results 
were not satisfactory since the 33 systematically absent 
reflections of the glide plane did not vanish in the 
statistical average after the background correction with 
B(O, A). An additional background correction led to 
improved results applying the following procedure: 

With the significant net intensities of the 33 system- 
atically absent reflections obtained with the background 
correction B(O, A), a new background data field Nu(Oi) 
with 1 _< i _< 33 was generated. The angles 0i are the 
diffraction angles (at 0.46/~) of the systematically absent 
reflections and the values of Nv are the incompletely cor- 
rected integrated intensities of the systematically absent 
reflections. Values of Nv(O) with 0i < 0 < 0i+ l were 
interpolated. All reflections were additionally corrected 
with this background function Nv(O) by subtraction. 

Results 

The structure was refined using 682 reflections by full- 
matrix least squares based on IF[. Anisotropic displace- 
ment parameters were used for all atoms. The final R 
values were R = 0.071 and Rw = 0.021 (R values 
resulting from the monochromatic data are R = 0.036, 
Rw = 0.036). 

According to Burzlaff & Grube (1980), the Zn 2÷ and 
Na(1) ÷ ions are statistically distributed in the position 
16(c) xxx (25% Zn 2÷ and 75% Na+). This distribution 
leads to an occupation factor for Na(1) ÷ offo~c = 1.45. 
The values obtained from the monochromatic data and 
from the Laue data were fo~c - 1.42 (1) and foc~ = 
1.455 (9), respectively, fo~c = 1.455 (9) is closer to the 
calculated value. 

In addition, the Na(2) ÷ ion does not occupy exactly 
the twofold axis; thus, it was set to a general position 
and treated as a split atom with fo~c = 0.5. The least- 
squares calculation using the monochromatic data set 
led to focc= 0.459 (6) while the use of the Lane data 
set resulted in f o c c =  0.493 (3), showing again better 
agreement with the calculated value. 

Table 1 shows the fractional coordinates and Table 2 
the displacement factors resulting from full-matrix least- 
squares refinement of both data sets. Comparison shows 
that no important deviations appear. Nearly all fractional 
coordinates agree within two standard deviations and 
the displacement coefficients agree within five standard 
deviations. Exceptions are the parameters x and y for 
O(1), which agree within four standard deviations, and 
UI1, U22 and U33 for S(2), which agree within seven 
standard deviations. 

The extinction correction method of Larson (1970) 
leads to a parameter of 39649 (tr = 3635) for the 

monochromatic and 13 108 (~r - 1271) for the Laue data 
set. Thus, the Laue technique is suitable to reduce the 
amount of extinction. The R values obtained by least 
squares without secondary extinction correction were 
R = 0.074 and Rw = 0.024 for the Laue data and R = 
0.043 and Rw = 0.043 for the monochromatic data. 

Table 3 shows some selected structure-factor moduli 
from the monochromatic and Laue data sets. The cal- 
culated values Fcal represent the structure-factor moduli 
without secondary-extinction correction from the least- 
squares procedure. In addition, the percentage deviation 
for the extinction effect is tabulated. 

Discussion 

It could be shown that surprisingly good crystallographic 
information can be obtained with the Laue technique 
in spite of the use of an ordinary scintillation detector. 
Similar measurements were performed by Sakamaki, 
Hosoya & Fukamachi (1980). They used a heavy and 
expensive solid-state detector cooled with liquid nitro- 
gen. These authors describe several examples of data 
collections. They obtained a final R value of 2.12% at 
E2 = 25 keV [E2 ~ (hc)//~q]. The overall quality of their 
example (LiF crystal sample) is comparable with the data 
quality of the present work (Rw = 2.4). It is not clear 
from the paper of Sakamaki et al. what kind of R value 
(weighted or unweighted) they mean. 

Sakamaki et al. measured about four symmetrically 
equivalent reflections for each structure factor. The mea- 
surement time of each reflection was about 8.5 min, 
resulting in an effective measurement time tl for each 
structure-factor value of about 4 x 8.5 = 34min  on 
average. 

In the present work, about 17 symetrically equivalent 
reflections were measured on average for each struc- 
ture factor. This leads to a total measurement time of 
17 x55 s - 15.6 min. Furthermore, Sakamaki et al. used 
an X-ray tube with a Cu target at 40 kV and 20 mA. 
By application of (1) (tungsten: Z = 74, U = 50 kV, 
I -- 40 mA; copper: Z = 29, U = 40 kV, I = 20 mA), 
the ratio of the efficiency factors r/w/r/Cu is about 6.4. 
The effective measurement time with a Cu tube would 
therefore have been t2 - 6.4 x 15.6 min - 100 min. 

Comparing tl with t2 gives a factor of only 3 in 
spite of the fact that the solid-state detector has a 
much better energy resolution. In general, the signal- 
to-noise ratio and data quality can be improved by 
using a detector with better energy resolution since the 
background correction can be performed much more 
reliably. The improvements of the present work are 
probably because additional corrections described earlier 
were applied to the Laue data. 

On the other hand, the large difference between R 
and Rw shows that the improvements obtained by the 
additional corrections are limited. The signal-to-noise 
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Table 2. Anisotropic displacement coefficients U 0 
Values given in the second line for each atom result from monochromatic data. 

UI 1 U22 U33 ~'23 UI 3 U12 

Na/Zn 0.0291 (9) 0.0291 (9) 0.0291 (9) 0.0085 (8) 0.0085 (8) 0.0085 (8) 
0.0334 (6) 0.0334 (6) 0.0334 (6) 0.0054 (5) 0.0054 (5) 0.0054 (5) 

CI 0.0173 (8) 0.012 (1) 0.0173 (8) 0.0000 0.0000 0.0000 
0.0224 (4) 0.0189 (5) 0.0224 (4) 0.0000 0.0000 0.0000 

S (1) 0.022 (I) 0.0093 (9) 0.0124 (9) 0.0000 -0.0022 (9) 0.0000 
0.0266 (5) 0.0144 (3) 0.0169 (4) 0.0000 -0.0027 (4) 0.0000 

S (2) 0.0132 (5) 0.0132 (5) 0.0132 (5) 0.0017 (6) 0.0017 (6) 0.0017 (6) 
0.0181 (2) 0.0181 (2) 0.0181 (2) 0.0012 (2) 0.0012 (2) 0.0012 (2) 

Na(I )  0.022(1) 0.028(1) 0.021 (1) --0.0021 (9) -0 .003(1)  0.006(1) 
0.0285 (6) 0.0300 (6) 0.0250 (6) -0.0029 (5) -0.0043 (6) 0.0036 (5) 

Na (2) 0.052 (9) 0.029 (4) 0.011 (2) -0 .004 (4) -0.003 (3) --0.005 (7) 
0.047 (3) 0.036 (2) 0.016 (1) 0.000 (2) -0 .002 (1) -0.005 (3) 

O (1) 0.086 (3) 0.050 (3) 0.024 (2) -0.007 (2) 0.033 (3) --0.031 (3) 
0.078 (2) 0.056 (2) 0.039 (2) -0.012 (I) 0.031 (2) -0.028 (2) 

O (2) 0.029 (2) 0.016 (2) 0.029 (2) 0.006 (2) 0.002 (2) 0.000 (2) 
0.033 (1) 0.026 (1) 0.032 (1) 0.0070 (9) -0.001 (1) -0.0000 (9) 

O (3) 0.031 (3) 0.034 (2) 0.032 (2) -0.026 (2) 0.001 (2) -0.010 (2) 
0.043 (2) 0.043 (1) 0.037 (1) -0.024 (1) -0.001 (1) -0.009 (1) 

O (4) 0.093 (3) 0.093 (3) 0.093 (3) -0.032 (3) -0.032 (3) -0.032 (3) 
0.109 (4) 0.109 (4) 0.109 (4) -0.040 (3) -0.040 (3) -0 .040 (3) 

Table 3. Observed and calculated structure-factor moduli 

Laue data Monochromatic data 

( hkl) /~obs 
(400) 36O.5 
(800) 321.0 
(620) 311.0 
(440) 645.5 
(880) 336.7 
(611) 261.3 
(332) 375.1 
(552) 259.3 
(444) 346.6 
(664) 225.5 
(655) 335.0 
(888) 275.2 

AFob~ F~al dev. (%) Fob.~ AFot,s /:~al dev. (%) 

1.2 362.7 0.6 317.4 1.4 339.6 7 
1.3 312.5 - 2.7 297.1 1.2 310.4 4.5 
0.7 311.7 0.2 288.8 1.0 305.3 5.7 
2.3 718.0 11.2 486.9 1.8 692.7 42.3 
1.7 341.5 1.4 307.2 1.0 320.5 4.3 
0.6 261.1 --0.1 245.4 0.9 256.3 4.4 
0.8 379.6 1.2 327.8 1.2 391.1 19.3 
0.8 258.3 -0 .4  243.2 0.8 249.9 2.8 
1.1 343.5 -0 .9  313.9 1.6 336.7 7.3 
0.7 226.2 0.3 214.2 0.8 219.1 2.3 
0.8 329.5 - 1.6 309.1 1.1 323.9 4.8 
1.7 270.5 - 1.7 247.6 2.0 251.8 1.7 

ratio for weak reflections can be considerably improved 
only by using a detector with a better energy resolution. 
A further improvement of the signal-to-noise ratio can 
be obtained by using varying detector apertures fitted to 
the optimal spot size of the Laue reflection. The spot size 
depends on the mosaic distribution, beam divergence etc. 
(e.g. Helliwell, 1992). 

In addition, the data quality can be improved by using 
high-intensity X-ray sources. The use of the tungsten 
tube (2 kW) increases the efficiency r/w/0c u to 6.4 com- 
pared with the copper tube (0.8 kW) of Sakamaki et al. 

In general, the intensity of a characteristic line is about 
two orders of magnitude stronger than the intensity per 
wavelength interval within the Bremsstrahlung spectrum. 
This does not mean that all integrated intensities of 
a Laue data set are two orders of magnitude weaker 
than that of a conventionally measured data set. With 
monochromatic radiation, the characteristic line selects 
an interval of the mosaic spread. Without a change of 
any other parameters, an increasing mosaic spread and 

beam divergence leads to an increasing width of the 
Bragg reflection. The consequence is an increase in the 
integrated measurement time without an additional gain 
of net intensity. 

In contrast to the monochromatic technique, the mo- 
saic spread selects a wavelength interval AA when using 
white radiation. AA increases when the mosaic spread 
and the beam divergence increases, with the consequence 
that a greater fraction of the incoming radiation of the 
primary beam is actually diffracted by the crystal sample. 
Thus, the measurement time can be reduced to obtain 
the same integrated intensity. A detailed discussion of 
the mosaic spread and beam divergence in the Laue 
technique can be found in Lange (1995). 

Furthermore, the ratio of the Lorentz factors for 
monochromatic (with equatorial geometry) and white- 
beam diffraction is cot0. This leads to an additional 
reduction of the measurement time, especially at low 
0 angles. This effect is discussed briefly in the paper of 
Sakamaki et al. 
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Abstract 

A new quasiperiodic (QP) pattern with dodecagonal 
symmetry defined by a self-similar inflation/deflation 
rule is presented. The pattern consists of three kinds of 
base tiles, thin rhombus, regular triangle and square, and 
their self-similar inflation/deflation rule is shown to be 
derived from a regular zonogon with 12-fold symmetry. 
The self-similar transformation matrix for this pattern is 
derived and the quasiperiodicity is discussed. 

I. Introduction 

The properties of quasiperiodic tilings with dodecagonal 
symmetry have been discussed by several authors. The 
studies of quasiperiodic tilings with pentagonal and 
decagonal symmetry began with the discovery of AI-Mn 
(icosahedral phase) (Schechtman, Blech, Gratias & Cahn, 
1984) and AI-Fe (decagonal phase) quasicrystals (Fung 
et al., 1986). The structure of crystalline states with 
dodecagonal symmetry in the Ni-Cr amorphous phase 
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(Ishimasa, Nissen & Fukano, 1985) gives clues to studies 
of quasicrystal modeling. A dodecagonal quasiperiodic 
tiling (DQPT) was first presented by the grid method and 
self-similar inflation (Stampfli, 1986), which contains 
regular triangles, squares and rhombi. Another approach 
for DQPT was proposed using a projection method 
(Yang & Wei, 1987). The projection and grid methods 
have been extended and generalized with 3-, 4-, 5-, 6-, 8- 
and 12-fold symmetry (Whittaker & Whittaker 1988; 
Socolar, 1989) and algebraic studies of dodecagonal 
tiling have been carried out in detail (Niizeki'& Mitani, 
1987). Recently, octagonal, decagonal and dodecagonal 
tilings have been summarized in relation to Amman bar 
grids (LUck, 1993). In this paper, a new DQPT is 
presented, which is characterized by a matching self- 
similar inflation/deflation rule in building self-similarity. 
The quasiperiodicity is verified by the fact that the ratios 
of numbers of constituent base tiles (regular triangle, 
square and rhombus) converge to an irrational number 
when the infinite iteration of the inflation is operated on 
each tile. 
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